# Hercules Industrial User Interface PCA 1256673 Revision G

# **Revision Table**

| Revision | Changes                                                          | Engineer | Date       |
|----------|------------------------------------------------------------------|----------|------------|
| Α        | Initial Version                                                  | BAP      | 2023-06-26 |
| В        | Update the Setup Section                                         | BAP      | 2023-07-12 |
|          | Update Write Serial Number section                               |          |            |
|          | Update Hour meter section to remove resistor from                |          |            |
|          | test                                                             |          |            |
|          | Update Potentiometer check                                       |          |            |
|          | <ul> <li>Add 2<sup>nd</sup> option to backup camera</li> </ul>   |          |            |
|          | Update CAN bus section                                           |          |            |
| С        | • Low side driver resistor changed from 12.1k to                 | BAP      | 2023-07-26 |
|          | 1.12k                                                            |          |            |
|          | <ul> <li>Updated every section with new commands</li> </ul>      |          |            |
|          | Consolidated Switch membrane test into the switch                |          |            |
|          | test                                                             |          |            |
| D        | <ul> <li>Fix typos in Analog Inputs section</li> </ul>           | BAP      | 2023-12-14 |
|          | <ul> <li>Update RS232 and UART4 sections to enable a</li> </ul>  |          |            |
|          | simple loopback test                                             |          |            |
|          | <ul> <li>Fix typo in step 4 of LSD Output Test</li> </ul>        |          |            |
|          | <ul> <li>Correct Digital Input pin mapping</li> </ul>            |          |            |
|          | <ul> <li>Correct CAN message ID for reading back data</li> </ul> |          |            |
| E        | <ul> <li>Move CAN to beginning of test</li> </ul>                | BAP      | 2023-12-18 |
|          | Update Initialize FCT mode section to wait for                   |          |            |
|          | CANdump                                                          |          |            |
| F        | Change LCD backlight resistor to 30ohms                          | BAP      | 2024-02-21 |
|          | Update CAN bus test                                              |          |            |
| G        | Potentiometer Check test updated to call out new                 | BAP      | 2025-04-08 |
|          | voltage at pin 1 because default contrast voltage                |          |            |
|          | was changed in software                                          |          |            |

## Table of Contents

| Setup:                          |
|---------------------------------|
| CAN Bus Test:                   |
| Initialize FCT Mode:            |
| Revision Verification:          |
| Write Serial Number:            |
| Serial Flash:                   |
| Trusted Platform Module (TPM):4 |
| RTC:                            |
| Power Input:                    |
| USB Power:                      |
| 5V Sensor Power:                |
| Digital Input:                  |
| Analog Input:                   |
| Low Side Driver Output:         |
| Hour Meter Output:              |
| Membrane LED:                   |
| Display Supply Test:            |
| Potentiometer Check:            |
| LCD Color:                      |
| Touchscreen:                    |
| Backlight Driver:               |
| Backup Camera:                  |
| RS-232:10                       |
| UART (5V):                      |
| USB Host:11                     |
| USB device:11                   |

## Setup:

A fixture has connections with pogo pins for all necessary points. All Test commands are sent to the board using the UART debug port (J16). The board executes the commands and returns status over the same interface. The UART terminal should be configured for 115200 baud, 1 stop bits and 8 data bits. Operator input is required to verify LCD and touch panel function if the LCD is installed in the test fixture. The LCD may be omitted from the test fixture with prior approval from Tennant.

- 1. Install user interface assembly in machine.
- 2. Turn power on. Power supply is set to 24.0V and should be capable of driving a 2A load. Power is applied as indicated: COM goes to J3-1. +24V goes to J3-2 and J4-2. The board will not operate if J4-2 is below 8V.

## CAN Bus Test:

The baud rate for CAN 0 is 500kbps. CAN 1 is 125kbps. Node ID is 0x01.

- 1. Verify that the DUT is sending messages on the CAN bus.
  - a. One example is the heartbeat message, 0x701. The data field is typically non-zero.
- 2. This is sufficient to test both the TX and RX capability of the transceiver.
- 3. Do the test twice. Once for CAN Bus 0 and once for CAN Bus 1.

#### Initialize FCT Mode:

- 1. Before logging into the terminal wait until the messages "Starting candump CANO" and "Starting candump CAN1" appear.
- 2. Login to the UART debug port. Username is "**root**" and password is "**am4**". Note: the password characters will not echo back to the terminal for security reasons.
- 3. Initialize FCT mode by typing "fct" and pressing return.

## **Revision Verification:**

- 1. Read the software and hardware versions with the command "version".
- 2. The SW revision shall match the revision number listed in the released drawing of 1256673.
- 3. The HW revision shall match the revision number listed in the released drawing of 1256673.

## Write Serial Number:

1. Write Tennant board serial number (where [SN] is the serial number on the board) to EEPROM by sending the following command over THE DEBUG INTERFACE: **config w 499 [SN]** 

Response must include:

Writing of parameter: 499

- 2. Wait 5 seconds and cycle power to board.
- 3. Read the board serial number from memory by sending the following command over the debug interface: **"config r 499"**
- 4. Response must include the serial number written to the board.

## Serial Flash:

1. Programming the serial flash with the bootloader file will serve as the test. Successfully booting and logging into the terminal application is considered a pass.

## Trusted Platform Module (TPM):

- 1. Run command "tpm ?"
- 2. Confirm that the board ID is a non-zero number

## RTC:

- 1. All times shall be set to local manufacturing time
- 2. Set the seconds with the command "time s=XX"
- 3. Set the minutes with the command "time m=XX"
- 4. Set the hours with the command "time h=XX"
- 5. Save the time to the RTC with the command "time w"
- 6. Power cycle board for at least 10 seconds
- 7. Read back the time with the command "time ?", and verify it has incremented for approximately the amount of time since it was set.

## Power Input:

- 1. Read status of battery power with command "power ?"
- 2. Battery voltage will be returned. hw\_Power\_Batt\_Plus\_Voltage() shall be 24V ± 2.2%
- 3. Read status of key switch power with command "power ?"
- 4. key switch voltage will be returned. hw\_Power\_Battery\_Voltage() shall be 24V ± 2.2%
- 5. Apply 24V to J4-3
- 6. Read status of charger power with command "power ?"
- Charger voltage will be returned. hw\_Power\_Voltage\_Charge\_Interlock() shall be 24V ± 2.2%
- 8. Run command "power ?"

- 9. BATT+ LOW() shall be false
- 10. KEYSWITCH+ LOW() shall be false
- 11. CHARGER+ LOW() shall be false
- 12. Lower voltage at J3-2, J4-2, and J4-3 to 6.5V
- 13. Run command TBD suggestion "power ?"
- 14. Batt low input shall be True
- 15. Key switch input shall be True
- 16. Charger input shall be True

## USB Power:

- 1. Connect a 5W, 10Ω load to the +5V and GND connections of the USB A connector (J5-1 and J5-4)
- 2. J5-1 shall measure  $5V \pm 0.5V$
- 3. The USB switch has temperature based current limit feature. It will limit the current at approximately 1.5A
- 4. Connect a 25W,  $1.5\Omega$  load to the +5V and GND connections of the USB A connector (J5-1 and J5-4)
- 5. This will draw 3.33A through a circuit with a 1.5A current limit
- 6. Send command "usb ?"
- 7. hw\_USB\_Over\_Current() shall be True

## 5V Sensor Power:

- 1. Measure J18-13 WRT J18-14 with a DMM. Must measure 5.0V±1V.
- 2. Apply a  $50\Omega$  1W load between J18-13 and J18-14
- 3. Measure J18-13 WRT J18-14 with a DMM. Must measure 3.27±0.5V.
- 4. Remove load from connector J15

#### **Digital Input:**

- 1. Read inputs with command "inputs ?"
- 2. All inputs shall be false except for inputs 20, 21, 22, and 23, which shall be True
- 3. Refer table below for pin mapping of each input. Each input shall change state to True when bias is applied. Inputs 20, 21, 22, and 23 shall change state to False when bias is applied.

| Input Name  | Bias and Pin         | FCT mapping |
|-------------|----------------------|-------------|
| Membrane 0  | Connect J8-2 to J8-3 | Switch 0    |
| Membrane 5  | Connect J8-5 to J8-4 | Switch 5    |
| Membrane 10 | Connect J8-7 to J8-6 | Switch 10   |
| Membrane 15 | Connect J8-9 to J8-8 | Switch 15   |
| Mem_digin_1 | Apply GND to J10-1   | Switch 16   |
| Mem_digin_2 | Apply GND to J10-2   | Switch 17   |
| Digin_1     | Apply 24V to J4-6    | Switch 20   |

| Digin_2 | Apply 24V to J18-4  | Switch 21 |
|---------|---------------------|-----------|
| Digin_3 | Apply 24V to 18-5   | Switch 22 |
| Digin_4 | Apply 24V to J18-6  | Switch 23 |
| Digin_5 | Apply GND to J18-7  | Switch 24 |
| Digin_6 | Apply GND to J18-8  | Switch 25 |
| Digin_7 | Apply GND to J18-9  | Switch 26 |
| Digin_8 | Apply GND to J18-10 | Switch 27 |

## Analog Input:

- 1. Read analog inputs with the command "ainputs ?"
- 2. Under IIO 1, ainputs\_State( in\_voltage2\_raw ) and ainputs\_State( in\_voltage3\_raw ) shall be OV
- 3. Apply 3V to J18-11
- 4. Read analog inputs with the command "ainputs ?"
- 5. ainputs\_State( in\_voltage2\_raw ) reading shall be 3V ± 5%
- 6. Apply 4V to J18-12
- 7. Read analog inputs with the command "ainputs ?"
- 8. ainputs\_State( in\_voltage3\_raw ) reading shall be 4V ± 5%

#### Low Side Driver Output:

- 1. Connect a 1.21k 1W resistor to each of the following pins
  - a. J19-1 to J3-2.
  - b. J19-2 to J3-2
  - c. J19-3 to J3-2
  - d. J19-4 to J3-2
  - e. J19-5 to J3-2
  - f. J19-6 to J3-2
  - g. J19-7 to J3-2
  - h. J19-8 to J3-2
- 2. Enable all low side drivers by sending the following command: "1sd e=0"
- 3. Turn on low side driver 1 output by sending the following command: "1sd e=1"
- 4. Confirm the driver turned on by measuring J19-1. J19-1 must measure less than 1V WRT GND.
- 5. Turn off low side driver 1 output by sending the following command: "1sd d=1"
- 6. Repeat steps 2 through 4 for all 8 low side drivers
- 7. Low side driver chart with commands for reference
- 8. Disable all LSDs by sending the following command: "1sd e=0"

| LSD Name | Pin Number | Turn ON Command | Turn OFF Command |
|----------|------------|-----------------|------------------|
| LSD_1    | J19-1      | lsd e=1         | lsd d=1          |
| LSD_2    | J19-2      | lsd e=2         | lsd d=2          |
| LSD_3    | J19-3      | lsd e=3         | lsd d=3          |
| LSD_4    | J19-4      | lsd e=4         | lsd d=4          |
| LSD_5    | J19-5      | lsd e=5         | lsd d=5          |
| LSD_6    | J19-6      | lsd e=6         | lsd d=6          |
| LSD_7    | J19-7      | lsd e=7         | lsd d=7          |
| LSD_8    | J19-8      | lsd e=8         | lsd d=8          |

#### Hour Meter Output:

- 1. Enable hour meter with command "hour e"
- 2. Measure J3-6 with a DMM. Measurement shall be  $5V \pm 0.5V$
- 3. Turn of hour meter with command "hour d"

#### Membrane LED:

- 1. The test setup should have a 1.5kohm load resistor from each LED output LED1 through LED32 to 3.3V.
- 2. Confirm that all membrane panel LEDs are turned off by sending the following command over THE DEBUG INTERFACE: "**1ed o=0**".
- 3. Confirm that J8-10 through J8-24 and J8-28 through J8-44 are all turned off.
- 4. Turn on LED 1 by sending the "**led e=1**" command over THE DEBUG INTERFACE. The response must include:

led\_Set(1, 1:LED\_MODE\_ON, False)

- 5. Confirm that J8-10 is turned on.
- 6. Turn off LED 1 by sending the "**led d=1**" command over THE DEBUG INTERFACE. The response must include:

led\_Set(1, 1:LED\_MODE\_ON, False)

- 7. Confirm that J8-10 is turned off
- 8. Repeat steps 5 through 8 for all 32 LEDs.
- 9. LED chart with commands for reference:

| LED Name | Pin Number | Turn ON Command | Turn OFF Command |
|----------|------------|-----------------|------------------|
| LED_1    | J8-10      | led e=1         | led d=1          |
| LED_2    | J8-11      | led e=2         | led d=2          |
| LED_3    | J8-12      | led e=3         | led d=3          |
| LED_4    | J8-13      | led e=4         | led d=4          |
| LED_5    | J8-14      | led e=5         | led d=5          |
| LED_6    | J8-15      | led e=6         | led d=6          |

| LED_7  | J8-16 | led e=7  | led d=7  |
|--------|-------|----------|----------|
| LED_8  | J8-17 | led e=8  | led d=8  |
| LED_9  | J8-18 | led e=9  | led d=9  |
| LED_10 | J8-19 | led e=10 | led d=10 |
| LED_11 | J8-20 | led e=11 | led d=11 |
| LED_12 | J8-21 | led e=12 | led d=12 |
| LED_13 | J8-22 | led e=13 | led d=13 |
| LED_14 | J8-23 | led e=14 | led d=14 |
| LED_15 | J8-24 | led e=15 | led d=15 |
| LED_16 | J8-28 | led e=16 | led d=16 |
| LED_17 | J8-29 | led e=17 | led d=17 |
| LED_18 | J8-30 | led e=18 | led d=18 |
| LED_19 | J8-31 | led e=19 | led d=19 |
| LED_20 | J8-32 | led e=20 | led d=20 |
| LED_21 | J8-33 | led e=21 | led d=21 |
| LED_22 | J8-34 | led e=22 | led d=22 |
| LED_23 | J8-35 | led e=23 | led d=23 |
| LED_24 | J8-36 | led e=24 | led d=24 |
| LED_25 | J8-37 | led e=25 | led d=25 |
| LED_26 | J8-38 | led e=26 | led d=26 |
| LED_27 | J8-39 | led e=27 | led d=27 |
| LED_28 | J8-40 | led e=28 | led d=28 |
| LED_29 | J8-41 | led e=29 | led d=29 |
| LED_30 | J8-42 | led e=30 | led d=30 |
| LED_31 | J8-43 | led e=31 | led d=31 |
| LED_32 | J8-44 | led e=32 | led d=32 |

## Display Supply Test:

- 1. Measure J15 pin 1 WRT common with a DMM. Must measure 5.0V±1V.
- 2. Apply a  $50\Omega \, 1W$  load between pins 1 and 2 of connector J15
- 3. Measure pin 1 WRT common with a DMM. Must measure 3.27±0.5V.
- 4. Remove load from connector J15

## **Potentiometer Check:**

- 1. Apply 3.3V to pin 5 of connector J14
- 2. The voltage at pin 1 of U1301 shall be 0.63V + 0.1V

## LCD Color:

- 1. Send the command "screen t"
- 2. Confirm that the following pattern appears on the LCD:



## Touchscreen:

- 1. Send the command "screen c"
- 2. Follow the prompt on the LCD to calibrate the touchscreen:



3. After calibration the screen will go blank

## **Backlight Driver:**

If no LCD is included in the fixture, the previous two sections can be ignored. If it is included this section can be skipped.

- 1. Connect a 30  $\Omega$  3W resistor between nets LCD\_BL\_P and LCD\_BL\_N
- 2. The voltage at LCD\_BL\_P with respect to GND shall be 4V +/- 10%
- 3. For reference, the max current of the backlight circuit is 269mA

## Backup Camera:

There are two options for this test.

Option 1:

- 1. Plug in backup camera to J6
- 2. Run command "screen m"
- 3. Visually verify LCD shows the camera image without aberration

## Option 2:

- 1. Emulate the camera data using a DAC and apply to J6-4
- 2. Run command "screen m"
- 3. Verify the decoder is working by reading the digital output of the decoder and compare to the DAC input

## <u>RS-232:</u>

- 1. Connections: J18-1 is RS232 RXD, J18-2 is RS232 TXD
- 2. Connect J18-1 to J18-2
- 3. Send the command "rs232 t"
- 4. The UI will a character string over the TX pin and read it on the RX pin
- 5. Verify that the response is PASS

## <u>UART (5V):</u>

- 1. Connections: J4-4 is 5V UART RXD, J4-5 is 5V UART TXD
- 2. Connect J4-4 to J4-5
- 3. Send the command "uart4 t"
- 4. The UI will send data over the TX pin and read it on the RX pin
- 5. The UI will a character string over the TX pin and read it on the RX pin
- 6. Verify that the response is PASS

## USB Host:

- 1. Connect a flash drive or generic storage device to J5
- 2. The storage device shall have the file X.txt on it
- 3. Run command "**usb h**"
- 4. The response must include "USB checking for file "X.txt": OK"

## USB device:

- 1. Connect J7 to a computer
- 2. Verify the PID and VID of the device